MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Iterative algorithms for a joint pricing and inventory control problem with nonlinear demand functions

Author(s)
Mazumdar, Anupam, S.M. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (4.421Mb)
Other Contributors
Massachusetts Institute of Technology. Computation for Design and Optimization Program.
Advisor
Georgia Perakis.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Price management, production planning and inventory control are important determinants of a firm's profitability. The intense competition brought about by rapid innovation, lean manufacturing time and the internet revolution has compelled firms to adopt a dynamic strategy that involves complex interplay between pricing and production decisions. In this thesis we consider some of these problems and develop computationally efficient algorithms that aim to tackle and optimally solve these problems in a finite amount of time. In the first half of the thesis we consider the joint pricing and inventory control problem in a deterministic and multiperiod setting utilizing the popular log linear demand model. We develop four algorithms that aim to solve the resulting profit maximization problem in a finite amount of time. The developed algorithms are then tested in a variety of settings ranging from small to large instances of trial data. The second half of the thesis deals with setting prices effectively when the customer demand is assumed to follow the multinomial logit demand model, which is the most popular discrete choice demand model. The profit maximization problem (even in the absence of constraints) is non-convex and hard to solve. Despite this fact we develop algorithms that compute the optimal solution efficiently. We test the algorithms we develop in a wide variety of scenarios from small to large customer segment, with and without production/inventory constraints. The last part of the thesis develops solution methods for the joint pricing and inventory control problem when costs are linear and demand follows the multinomial logit model.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 79-81).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/55076
Department
Massachusetts Institute of Technology. Computation for Design and Optimization Program
Publisher
Massachusetts Institute of Technology
Keywords
Computation for Design and Optimization Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.