MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Statistical methods for 2D-3D registration of optical and LIDAR images

Author(s)
Mastin, Dana Andrew
Thumbnail
DownloadFull printable version (18.23Mb)
Alternative title
Statistical methods for two dimensional - three dimensional registration of optical and LIDAR images
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
John W. Fisher, III.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Fusion of 3D laser radar (LIDAR) imagery and aerial optical imagery is an efficient method for constructing 3D virtual reality models. One difficult aspect of creating such models is registering the optical image with the LIDAR point cloud, which is a camera pose estimation problem. We propose a novel application of mutual information registration which exploits statistical dependencies in urban scenes, using variables such as LIDAR elevation, LIDAR probability of detection (pdet), and optical luminance. We employ the well known downhill simplex optimization to infer camera pose parameters. Utilization of OpenGL and graphics hardware in the optimization process yields registration times on the order of seconds. Using an initial registration comparable to GPS/INS accuracy, we demonstrate the utility of our algorithms with a collection of urban images. Our analysis begins with three basic methods for measuring mutual information. We demonstrate the utility of the mutual information measures with a series of probing experiments and registration tests. We improve the basic algorithms with a novel application of foliage detection, where the use of only non-foliage points improves registration reliability significantly. Finally, we show how the use of an existing registered optical image can be used in conjunction with foliage detection to achieve even more reliable registration.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 121-123).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/55123
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.