dc.contributor.advisor | Daniela L. Rus. | en_US |
dc.contributor.author | Julian, Brian John | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2010-05-25T20:51:30Z | |
dc.date.available | 2010-05-25T20:51:30Z | |
dc.date.copyright | 2009 | en_US |
dc.date.issued | 2009 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/55130 | |
dc.description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 379-383). | en_US |
dc.description.abstract | Multiple collaborating quad-rotor flying robots are useful in a broad range of applications, from surveillance with onboard cameras to reconfiguration of wireless networks. For these applications, it is often advantageous to have the robot team be a distributed system. In this thesis, an embedded controller capable of running distributed algorithms is presented for the quad-rotor flying robot. The robot platform is first characterized to help guide the design of the embedded control module. These modules are fabricated and tested on the quad-rotor flying robots in both indoor and outdoor environments. To propagate state estimates throughout the robot team, a location-based multi-hop algorithm is proposed. Network limitations, such as sub-optimal bandwidth and finite communication range, are implemented in hardware-in-the-loop simulations to determine system performance. A novel coverage algorithm for multiple hovering robots with downward facing cameras is then demonstrated on the embedded controller. The results from numerous indoor and outdoor experiments are discussed. | en_US |
dc.description.statementofresponsibility | by Brian John Julian. | en_US |
dc.format.extent | 383 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | An embedded controller for quad-rotor flying robots running distributed algorithms | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 593941931 | en_US |