MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatically identifying critical behaviors in programs

Author(s)
Carbin, Michael (Michael James)
Thumbnail
DownloadFull printable version (3.187Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Martin C. Rinard.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The large size of modern software systems has led to an increase in the complexity of the interaction between a system's code, its input, and its output. I propose the following classifications for the regions of a system's input: * Critical control: data that influences the internal operation and output of the system. * Critical payload: data that heavily contributes to the output of the program but does not substantially influence the internal operation of the program. * Benign control: data that influences the internal operation of the system, but does not contribute to the output of the system. * Benign payload: data that neither contributes to the output nor substantially influences the internal operation of the program. In this thesis, I present Chaos, a system designed to automatically infer these classifications for a program's inputs and code. Chaos monitors the execution trace and dynamic taint trace of an application over a suite of inputs to determine how regions of the programs' code and input influence its behavior and output. This thesis demonstrates the accuracy of Chaos's classifications for a set of imaging applications and their support libraries. These automatically inferred classifications are relevant to a variety of software engineering tasks, including program understanding, maintenance, debugging, testing, and defect correction triage.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 60-63).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/55143
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.