Towards unifying multi-resolution and multi-description : a distortion-diversity perspective
Author(s)
Jing, Sheng, Ph. D. Massachusetts Institute of Technology
DownloadFull printable version (5.597Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Lizhong Zheng and Muriel Médard.
Terms of use
Metadata
Show full item recordAbstract
We consider codec structures that exploit diversity in both source coding and channel coding components. We propose to study source-channel schemes using the tradeoff between end-to-end distortion level and the outage probability as our performance metric, namely distortion-diversity tradeoff. In the high SNR regime, within the distortion-diversity tradeoff framework, we are able to differentiate two source-channel schemes, one based on multi-resolution (MR) and the other based on multi-description (MD), that have been previously determined to have the same average distortion exponent. We then propose a triple-level source-channel scheme that unifies the Mr-based and the MD-based schemes. In particular, we demonstrate that the triple-level scheme dominates the MD-based and the MR-based schemes within the distortion-diversity tradeoff framework. We then extend the distortion-diversity tradeoff to the low SNR regime. We compare the distortion performance of the MR-based scheme and MD-based scheme with separate source-channel decoder that achieve constant levels of outage probability. The performance comparison between the two source-channel schemes is mixed, which naturally links the low outage probability and the high outage probability cases. In particular, the MD-based scheme with separate source-channel decoder preserves the interface between source coding component and channel coding component. The fact that MD-based scheme could outperform MR-based scheme while preserving the source-channel interface suggests that bit rates may not be a complete characterization of the source-channel interface.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009. Cataloged from PDF version of thesis. Includes bibliographical references (p. 109-111).
Date issued
2009Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.