Show simple item record

dc.contributor.advisorJerry F. McManus.en_US
dc.contributor.authorHoffmann, Sharon Susannaen_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.date.accessioned2010-05-27T19:46:46Z
dc.date.available2010-05-27T19:46:46Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/55329
dc.descriptionThesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2009.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractThe radionuclides ²³¹Pa and ²³⁰Th, produced in the water column and removed from the ocean by particle scavenging and burial in sediments, offer a means for paleoceanographers to examine past dynamics of both water column and sedimentary processes. I show for the first time that a state of balance exists between ²³⁰Th production and burial in the Central Arctic basins, based on measured sedimentary ²³⁰Th, inventories in box cores, establishing this nuclide's utility as a paleoceanographic indicator of sedimentary processes and as a normalization tool. I present the first ²³⁰Th-normalized particle fluxes calculated for the central Arctic: vertical particle fluxes were extremely low during the late glacial, rose during the deglaciation due to particle inputs from shelf inundation, increased productivity and ice-rafted debris, and fell again following the establishment of interglacial conditions. A major event of lateral sediment redistribution, inferred from surplus ²³⁰Th, inventories, occurred in the Makarov Basin during the deglaciation and may have been due to destabilization of slope and shelf sediments as sea level rose. I present the first high-resolution, radiocarbon-dated downcore records of sedimentary ²³¹Pa/²³⁰Th from the Arctic Ocean. Low ratios indicate that ²³¹Pa was exported from all sites during the late glacial period, with export decreasing during the deglaciation and Holocene. 231Pa/²³⁰Th measurements in cores from three continental slope sites show no evidence for a ²³¹Pa sink related to boundary scavenging on the continental slopes. Holocene ²³¹Pa/²³⁰Th ratios show a very significant variation by depth, with strong export of ²³¹Pa at deep sites but little or no export at shallow sites, a result which echoes findings for the South Atlantic and the Pacific.en_US
dc.description.abstract(cont.) The Arctic thus appears fundamentally similar to other ocean basins in its ²³¹Pa and ²³⁰Th dynamics, despite its peculiar qualities of sea ice cover, low particle flux, and relatively isolated deep waters.en_US
dc.description.statementofresponsibilityby Sharon Susanna Hoffmann.en_US
dc.format.extent207, [1] p., 4 leavesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.subjectJoint Program in Oceanography.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.titleUranium-series radionuclide records of paleoceanographic and sedimentary changes in the Arctic Oceanen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentJoint Program in Oceanographyen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc430034794en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record