Show simple item record

dc.contributor.authorKumar, Vinay P.en_US
dc.date.accessioned2004-10-01T14:00:07Z
dc.date.available2004-10-01T14:00:07Z
dc.date.issued2002-09-01en_US
dc.identifier.otherAITR-2002-008en_US
dc.identifier.otherCBCL-221en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/5569
dc.description.abstractThis thesis proposes a methodology for the design of man-machine interfaces by combining top-down and bottom-up processes in vision. From a computational perspective, we propose that the scientific-cognitive question of combining top-down and bottom-up knowledge is similar to the engineering question of labeling a training set in a supervised learning problem. We investigate these questions in the realm of facial analysis. We propose the use of a linear morphable model (LMM) for representing top-down structure and use it to model various facial variations such as mouth shapes and expression, the pose of faces and visual speech (visemes). We apply a supervised learning method based on support vector machine (SVM) regression for estimating the parameters of LMMs directly from pixel-based representations of faces. We combine these methods for designing new, more self-contained systems for recognizing facial expressions, estimating facial pose and for recognizing visemes.en_US
dc.format.extent68 p.en_US
dc.format.extent21293042 bytes
dc.format.extent2473001 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesAITR-2002-008en_US
dc.relation.ispartofseriesCBCL-221en_US
dc.subjectAIen_US
dc.subjectFacial Expression Recognitionen_US
dc.subjectPose Estimationen_US
dc.subjectViseme Recognitionen_US
dc.subjectSVMen_US
dc.titleTowards Man-Machine Interfaces: Combining Top-down Constraints with Bottom-up Learning in Facial Analysisen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record