Show simple item record

dc.contributor.authorHurlbert, Anyaen_US
dc.contributor.authorPoggio, Tomasoen_US
dc.date.accessioned2004-10-01T20:10:35Z
dc.date.available2004-10-01T20:10:35Z
dc.date.issued1987-06-01en_US
dc.identifier.otherAIM-909en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/5601
dc.description.abstractWe show that a color algorithm capable of separating illumination from reflectance in a Mondrian world can be learned from a set of examples. The learned algorithm is equivalent to filtering the image data---in which reflectance and illumination are mixed---through a center-surround receptive field in individual chromatic channels. The operation resembles the "retinex" algorithm recently proposed by Edwin Land. This result is a specific instance of our earlier results that a standard regularization algorithm can be learned from examples. It illustrates that the natural constraints needed to solve a problemsin inverse optics can be extracted directly from a sufficient set of input data and the corresponding solutions. The learning procedure has been implemented as a parallel algorithm on the Connection Machine System.en_US
dc.format.extent30 p.en_US
dc.format.extent4549310 bytes
dc.format.extent1641242 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesAIM-909en_US
dc.subjectcomputer visionen_US
dc.subjectcolor constancyen_US
dc.subjectlearningen_US
dc.subjectregularizationen_US
dc.subjectsoptimal estimationen_US
dc.subjectpseudoinverseen_US
dc.titleLearning a Color Algorithm from Examplesen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record