Show simple item record

dc.contributor.authorYuille, A.en_US
dc.date.accessioned2004-10-01T20:18:07Z
dc.date.available2004-10-01T20:18:07Z
dc.date.issued1984-12-01en_US
dc.identifier.otherAIM-752en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/5647
dc.description.abstractPsychophysical experiments show that the perceived colour of an object is relatively independent of the spectrum of the incident illumination and depends only on the surface reflectance. We demonstrate a possible solution to this undetermined problem by expanding the illumination and surface reflectance in terms of a finite number of basis functions. This yields a number of nonlinear equations for each colour patch. We show that given a sufficient number of surface patches with the same illumination it is possible to solve these equations up to an overall scaling factor. Generalizations to the spatial dependent situation are discussed. We define a method for detecting material changes and illustrate a way of detecting the colour of a material at its boundaries and propagating it inwards.en_US
dc.format.extent12 p.en_US
dc.format.extent1894226 bytes
dc.format.extent1461014 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesAIM-752en_US
dc.subjectcoloren_US
dc.subjectmaterial edgesen_US
dc.subjectbasis functionsen_US
dc.subjectmondriansen_US
dc.titleA Method for Computing Spectral Reflectanceen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record