Show simple item record

dc.contributor.advisorMarc A. Baldo.en_US
dc.contributor.authorHeidel, Timothy Daviden_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2010-08-26T15:19:12Z
dc.date.available2010-08-26T15:19:12Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/57534
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 153-166).en_US
dc.description.abstractOrganic semiconductor photovoltaics offer a promising route to low-cost, scalable, emissions-free electricity generation. However, achieving higher power conversion efficiencies is critical before these devices can play a larger role in our future energy generation landscape. Organic photovoltaic devices are currently limited by two primary challenges: (1) a trade-off between light absorption and exciton diffusion and (2) low open-circuit voltage due to charge recombination at the donor-acceptor interface. In this work, we demonstrate two new device architectures inspired by photosynthesis that aim to overcome these two challenges. First, we overcome the trade-off between light absorption and exciton diffusion by introducing an external light absorbing antenna layer. We model energy transfer from the antenna to the charge generating layers via surface plasmon polariton modes in the interfacial thin silver contact and via radiation into waveguide modes. We experimentally demonstrate devices with both single layer antennas and strongly absorbing resonant cavity antennas. We measure energy transfer efficiency from the antenna layer to the PV active layers as high as 51±10%. We discuss structural design criteria and describe ideal antenna material characteristics. Second, we reduce charge transfer state recombination in organic photovoltaics by inserting a thin interfacial layer at the donor-acceptor interface. The thin interfacial layer creates a cascade energy structure that destabilizes the Coulombically bound charge transfer state formed immediately following exciton dissociation. We nd the optimal interfacial layer thickness to be approximately 1.5 nm. In CuPc/C₆₀ devices, under simulated solar illumination the short-circuit current increased 34%, the open-circuit voltage increased 33%, and the power conversion eciency increased 49%. Thin interfacial layers can also be used to study the physics of exciton separation.en_US
dc.description.statementofresponsibilityby Timothy David Heidel.en_US
dc.format.extent166 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titlePhotosynthesis-inspired device architectures for organic photovoltaicsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc631177427en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record