Show simple item record

dc.contributor.advisorH. Sebastian Seung.en_US
dc.contributor.authorJain, Virenen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Brain and Cognitive Sciences.en_US
dc.date.accessioned2010-08-26T15:22:21Z
dc.date.available2010-08-26T15:22:21Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/57546
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2010.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 130-140).en_US
dc.description.abstractWe present an approach to solving computer vision problems in which the goal is to produce a high-dimensional, pixel-based interpretation of some aspect of the underlying structure of an image. Such tasks have traditionally been categorized as ''low-level vision'' problems, and examples include image denoising, boundary detection, and motion estimation. Our approach is characterized by two main elements, both of which represent a departure from previous work. The first is a focus on convolutional networks, a machine learning strategy that operates directly on an input image with no use of hand-designed features and employs many thousands of free parameters that are learned from data. Previous work in low-level vision has been largely focused on completely hand-designed algorithms or learning methods with a hand-designed feature space. We demonstrate that a learning approach with high model complexity, but zero prior knowledge about any specific image domain, can outperform existing techniques even in the challenging area of natural image processing. We also present results that establish how convolutional networks are closely related to Markov random fields (MRFs), a popular probabilistic approach to image analysis, but can in practice can achieve significantly greater model complexity. The second aspect of our approach is the use of domain specific cost functions and learning algorithms that reflect the structured nature of certain prediction problems in image analysis.en_US
dc.description.abstract(cont.) In particular, we show how concepts from digital topology can be used in the context of boundary detection to both evaluate and optimize the high-order property of topological accuracy. We demonstrate that these techniques can significantly improve the machine learning approach and outperform state of the art boundary detection and segmentation methods. Throughout our work we maintain a special interest and focus on application of our methods to connectomics, an emerging scientific discipline that seeks high-throughput methods for recovering neural connectivity data from brains. This application requires solving low-level image analysis problems on a tera-voxel or peta-voxel scale, and therefore represents an extremely challenging and exciting arena for the development of computer vision methods.en_US
dc.description.statementofresponsibilityby Viren Jain.en_US
dc.format.extent140 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBrain and Cognitive Sciences.en_US
dc.titleMachine learning of image analysis with convolutional networks and topological constraintsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciences
dc.identifier.oclc639292432en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record