Show simple item record

dc.contributor.advisorRichard R. Schrock.en_US
dc.contributor.authorChin, Jia Minen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemistry.en_US
dc.date.accessioned2010-08-26T15:40:38Z
dc.date.available2010-08-26T15:40:38Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/57567
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2010.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionVita. Cataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractA series of monopyrroletriamine ligands [Arpyr(Ar')2]H3 of the form ArC4H2NHCH2N(CH2CH2NHAr')2 (Ar = 2,4,6-mesityl (Mes), 2,4,6-triisopropylphenyl (TRIP); Ar' = C6F5, 2-tolyl (o-tol), naphthyl, 3,5-(2,4,6-triisopropylphenyl)phenyl (HIPT), 3,5- dimethylphenyl, 3,5-di-tert-butylphenyl were synthesized. [Mespyr(C6F5)2]MoCl, ([Mespyr(C6F5)2]Mo = MesitylC4H2NCH2N(CH2CH2NC6F5)2) was prepared by reaction of [Mespyr(C6F5)2]H3 with MoCl4(THF)2 and base and [Mespyr(3,5-t-Bu)2]MoCl and [Mespyr(3,5- Me)2]MoCl (3,5-t-Bu=3,5-di-tert-butylphenyl, Me = 3,5-dimethylphenyl) were synthesized likewise. All three monochlorides are paramagnetic. [Mespyr(C6F5)2]MoNMe2, [[Mespyr(otol) 2]MoNMe2, [Mespyr(3,5-t-Bu)2]MoNMe2, [Mespyr(3,5-Me)2]MoNMe2 were synthesized by reaction of the ligands with Mo(NMe2)4. The resulting compounds are diamagnetic and range in color from teal blue to emerald green. These low spin monodimethylamide complexes exist in rapid equilibria with their high spin forms. [Mespyr(C6F5)2]MoN and [Mespyr(3,5-t-Bu)2]MoN were synthesized by reaction of their respective monochlorides with NaN3 and are yellow diamagnetic species. Reaction of [Mespyr(3,5-t-Bu)2]MoN with Et3OBF4 leads to {[Mespyr(3,5- t-Bu)2]MoNEt}BF4, also a diamagnetic yellow species. [Mespyr(C6F5)2]MoOTf is synthesized by the reaction of [Mespyr(C6F5)2]MoCl with AgOTf. Reduction of [Mespyr(3,5-t-Bu)2]MoCl with Na under N2 led to [Mespyr(3,5-t-Bu)2]MoNNNa(THF)x, several species with varying numbers of THF coordination, x. A single species can be obtained when [Mespyr(3,5-t- Bu)2]MoNNNa(THF)x is reacted with either NBu4Cl or 15-crown-5 ether to yield purple green 4 {[Mespyr(3,5-t-Bu)2]MoNN}NBu4 or [Mespyr(3,5-t-Bu)2]MoNNNa(15-c-5). All the diazenide species are diamagnetic. Oxidation of the diazenide with AgOTf yields [Mespyr(3,5-t- Bu)2]Mo(N2). [Mespyr(3,5-t-Bu)2]Mo(CO) is synthesized by exposure of [Mespyr(3,5-t- Bu)2]Mo(N2) to CO. Reaction of [Mespyr(3,5-t-Bu)2]MoCl with NaBPh4 and NH3 yields {[Mespyr(3,5-t-Bu)2]Mo(NH3)}BPh4. Catalytic runs employing [Mespyr(3,5-t-Bu)2]MoN as the catalyst yielded one equivalent of NH3. A triamidoamine ligand [(HIPTNCH2CH2CH2)3N]3- was synthesized and metalated with MoCl4(THF)2 to produce [(HIPTNCH2CH2CH2)3N]MoCl ([HIPTtrpn]MoCl). Reduction of [HIPTtrpn]MoCl by KC8 under an atmosphere of dinitrogen leads to the green species [HIPTtrpn]MoNNK which can be oxidized by ZnCl2(dioxane) to produce [HIPTtrpn]Mo(N2). Other complexes synthesized include {[HIPTtrpn]Mo(NH3)}+ salts and [HIPTtrpn]Mo(CO). Xray studies were carried out on [HIPTtrpn]MoN and {[HIPTtrpn]Mo(NH3)}BAr'4. This system is not catalytic for the reduction of dinitrogen to ammonia and studies were carried out to elucidate the reasons. Oxidation studies were carried out on [HIPTN3N]Mo(N2) and [HIPTN3N]W(N2) ([HIPTN3N] = [(HIPTNCH2CH2)3N]3-). The rate of conversion of [HIPTN3N]Mo(NH3) to [HIPTN3N]Mo(N2) was studied and found to be increased in the presence of BPh3. [HIPTN3N]Mo(N2) conversion to [HIPTN3N]Mo(CO) was found to be dependent on CO pressure. Protonation studies of [HIPTN3N]Mo(N2) were also carried out. Studies of [HIPTN3N]MoNNH decomposition showed that decomposition is not base-catalyzed. [HIPTN3N]W(CO) was synthesized by exposure of [HIPTN3N]W(N2) to CO. It is a green, paramagnetic compound and its use as a standard (for determining relative concentrations of other compounds in the IR sample) in IR spectroscopic studies appears to be promising. [HIPTN3N]MoCNH2 was synthesized by addition of acid and reducing agent to [HIPTN3N]MoCN and is a yellow, diamagnetic compound. Two triamidophosphine ligands, triHIPTamine and tri-n-Buamine were synthesized. Metalation of Zr(NMe2)4 with these ligands leads to formation of pn3HIPTZrNMe2 and pn3-n- BuZrNMe2, both diamagnetic, pale yellow complexes.en_US
dc.description.statementofresponsibilityby Jia Min Chin.en_US
dc.format.extent188 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemistry.en_US
dc.titleSynthesis and studies of molybdenum and tungsten complexes for dinitrogen reductionen_US
dc.title.alternativeSynthesis and studies of Mo and W complexes for 2N reductionen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc655268149en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record