dc.description.abstract | Chapter 1: Reaction of Mo(NR)(CHR')(OTf)2(dme) (R = 2,6-i-Pr2C6H3 (Ar), 2,6-Me2C6H3 (Ar'), 2,6-Cl2C6H3 (ArCl), 1-adamantyl (Ad); R' = CMe2Ph, CMe3; dme = dimethoxyethane) with the lithium salt of ArCl-nacnac ([2,6-Cl2C6H3NC(Me)]2CH), led to complexes of the type Mo(NR)(CHCMe2R')(OTf)(ArCl-nacnac). Treatment of these compounds with Na{BArF 4} (ArF = 3,5-(CF3)2C6H3) afforded rare examples of cationic imido alkylidene complexes, {Mo(NR)(CHR')(OTf)(ArCl-nacnac)}{BArF 4}. Addition of {HNMe2Ph}{BArF 4} to Mo(NR)(CHR')(L)2 (L = NC4H4 (Pyr), 2,5-Me2NC4H2 (Me2Pyr)) in THF produced {Mo(NR)(CHR')(L)(THF)x}{BArF 4} (x = 2 for Me2Pyr or 3 for Pyr). Addition of alcohol or phenol to {Mo(NAr)(CHCMe2Ph)(Pyr)(THF)3}{BArF 4} produced {Mo(NAr)(CHCMe2Ph)(OR")(THF)x}{BArF 4} (R" = CMe(CF3)2 (x = 2 or 3), Ar (x = 1), Ad (x = 2)). Complexes Mo(NAr)(CHCMe2Ph)(MesPyr)2 (MesPyr = 2- mesitylpyrrolide), Mo(NAd)(CHCMe3)(MesPyr)2, and Mo(NAr)(CHCMe2Ph)(OTf)(BinaphPPh2) (BinaphPPh2 = (R)-2'-(diphenylphosphino)- [1,1'-binaphthalen]-2-oxide) were also generated. The solid-state structures of Mo(NAr)(CHCMe2Ph)(OTf)(ArCl-nacnac), {Mo(NAr)(CHCMe2Ph)(ArClnacnac)}{ BArF 4}, {Mo(NAr)(CHCMe2Ph)(Pyr)(THF)3}{BArF 4}, {Mo(NAr)(CHCMe2Ph)(OCMe(CF3)2)(THF)3}{BArF 4}, {Mo(NAr)(C2H4)(OCMe(CF3)2)(THF)3}{BArF 4}, {Mo(NAr)(CH2CMe2Ph)(OAr)2}{BArF 4}, Mo(NAr)(CHCMe2Ph)(MesPyr)2, and Mo(NAr)(CHCMe2Ph)(OTf)(BinaphPPh2) have been determined by X-ray diffraction. The initial reactivity with simple olefins employing many of these new alkylidenes was explored. Chapter 2: Two diastereomers of the MAP (monoaryloxidepyrrolide) species, W(NAr)(CH2)(Me2Pyr)(OBitetBr2) (OBitetBr2 = (R)-3,3'-dibromo-2'-(tertbutyldimethylsilyloxy)- 5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl-2-olate), were generated through addition of HOBitetBr2 to W(NAr)(CH2)(Me2Pyr)2. The unsubstituted tungstacyclobutane species, W(NAr)(C3H6)(Me2Pyr)(OBitetBr2), was isolated by exposing the methylidene species to ethylene. A variety of NMR experiments were carried out on the methylidene and metallacycle to elucidate the exchange process between these species. Neophylidene W(NR)(CHCMe2Ph)(Me2Pyr)(OTPP) (OTPP = 2,3,5,6-tetraphenylphenoxide), methylidene W(NR)(CH2)(Me2Pyr)(OTPP), and 6 tungstacyclobutane W(NR)(C3H6)(Me2Pyr)(OTPP) were prepared. Treatment of W(NAr)(CH2)(Me2Pyr)(OTPP) with PMe3 yielded yellow W(NAr)(CH2)(Me2Pyr)(OTPP)(PMe3). NMR studies on compounds W(NAr)(C3H6)(Pyr)(OHIPT) (OHIPT = 2,6-bis-(2,4,6-triisopropylphenyl)phenoxide) and Mo(NAr)(C3H6)(Pyr)(OHIPT) were carried out to examine the exchange process between the metallacyclobutane and the methylidene. Compounds W(NAr)(C3H6)(Me2Pyr)(OBitetBr2), W(NAr)(CH2)(Me2Pyr)(OTPP), W(NAr)(CH2)(Me2Pyr)(OTPP)(THF), W(NAr)(CH2)(Me2Pyr)(OTPP)(PMe3), W(NAr)(C3H6)(Me2Pyr)(OTPP), Mo(NAr)(CH2)(Pyr)(OHIPT), Mo(NAd)(CHCMe3)(Pyr)(OHIPT), and W(NAr)(C3H6)(Pyr)(OHIPT) were crystallographically characterized. Chapter 3: Molybdenum and tungsten catalysts of the type M(NR)(CHR')(Pyr)(OR'') were prepared for highly Z-selective homocoupling metathesis of terminal olefins. Substrates screened were: 1-hexene, 1-octene, allylbenzene, allyltrimethylsilane, methyl-9-decenoate, methyl- 10-undecenoate, allylboronic acid pinacol ester, allylbenzylether, allyltosylamide, Nallylaniline, allyloxy(tert-butyl)dimethylsilane, and allylcyclohexane. Homocoupled products were isolated in moderate yields employing <1 mol% catalyst loading and with >90% Z-selectivity. Chapter 4: Exposing Mo(NAr)(C2H4)(MesPyr)2 to two equivalents of HOCH(CF3)2 afforded Mo(NAr)(C2H4)(OCH(CF3)2)2(Et2O). Mo(NAr)(C2H4)(OCH(CF3)2)(Et2O) was shown to isomerize and metathesize olefins such as propene, 1-hexene, and 1-octene at elevated temperatures. Evidence of isomerization and olefin metathesis was also observed with complexes Mo(NAd)(C2H4)(Pyr)(OHIPT) and Mo(NAr)(C2H4)(Me2Pyr)(OAr). | en_US |