Aerodynamic Optimization Based on the Euler and Navier-Stokes Equations using Unstructured Grids
Author(s)
Elliott, Jonathan Kindred
DownloadFDRL_TR-98-1.pdf (6.515Mb)
Metadata
Show full item recordAbstract
The overall problem area addressed is that of efficient aerodynamic shape design through the use of computational fluid dynamics (CFD). A method is presented for performing optimization including modal inverse design and lift-constrained drag minimization -- based on the 2D and 3D Euler equations and the 2D and 3D laminar Navier-Stokes equations. The discrete adjoint approach was taken and the adjoint solvers developed were based on flow solvers developed for use with unstructured grids. Optimization exercises are presented which demonstrate the effectiveness and practicality of the optimization system in finding credible optimal geometries.
Date issued
1998-06Publisher
Aerospace Computational Design Laboratory, Dept. of Aeronautics & Astronautics, Massachusetts Institute of Technology
Series/Report no.
ACDL Technical Reports;FDRL TR-98-1