MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effect of a low density residuum on geoid anomalies and topography

Author(s)
Agner, Mary Alexandra
Thumbnail
DownloadFull printable version (6.866Mb)
Advisor
Bradford H. Hager.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Recent seismological measurements of the Pacific oceanic structure have detected a positive correspondence between surface topography, seismic wave speed, and the geoid (gravitational potential). High seismic wave speed indicates cold material sinking, which pulls the surface downward. Thus, topographic lows are expected to correlate with seismic wave speed highs, contrary to the new seismic measurements. We propose models which include two segregated materials, representing the fertile upper mantle and the residue from crustal melting, in order to decouple the surface topography from subsurface convection and create a positive correlation between topography and wave speed. We add a low viscosity zone beneath the residue to enhance the density contribution to the geoid anomaly and ensure that its sign is in phase with that of the surface topography and wave speed. Our models produce surface topography and geoid anomalies comparable to the recent seismological measurements. These models offer constraints on the strength of the low viscosity zone as well as the density difference between the residue and the upper mantle.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1998.
 
Includes bibliographical references (p. 27-28).
 
Date issued
1998
URI
http://hdl.handle.net/1721.1/57762
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.