MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanism and specificity of bacterial two-component signaling systems

Author(s)
Lubin, Emma A. (Emma Alexandra)
Thumbnail
DownloadFull printable version (5.989Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Biology.
Advisor
Michael T. Laub.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Bacterial two component signaling (TCS) systems are the predominant means by which bacteria sense and respond to external signals. These systems represent a large family of paralogous proteins; often hundreds of the histidine kinase (HK) and response regulator (RR) pairs that make up a TCS system can be found in a single cell. How do these systems maintain faithful signal transmission and avoid cross-talk? To understand how specificity is determined, we examined co-evolving residues between HKs and RRs, and guided by this, aimed to rewire specificity of several activities of TCS systems. Previous work in the lab has successfully rewired specificity of histidine kinases for response regulators in the phosphotransfer reaction. By mutating different subsets of these co-evolving residues, we were able to rewire specificity of RRs in the phosphotransfer reaction, and partially rewire specificity of HKs and RRs in the phosphatase reaction. Additionally, we identified residues that may dictate specificity between two domains of the histidine kinase, and found that mutating them altered the rate of autophosphorylation. These analyses will allow rational rewiring of two component systems in vivo, and permit us to examine the fitness consequences of this altered specificity, providing insight into the evolutionary pressures on TCS systems.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Biology, 2010.
 
Includes bibliographical references (p. 57-60).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/57799
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.