Show simple item record

dc.contributor.advisorScott R. Manalis.en_US
dc.contributor.authorChunara, Rumien_US
dc.contributor.otherHarvard University--MIT Division of Health Sciences and Technology.en_US
dc.date.accessioned2010-08-31T14:51:08Z
dc.date.available2010-08-31T14:51:08Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/57803
dc.descriptionThesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 115-120).en_US
dc.description.abstractMicrofabricated transducers have enabled new approaches for detection of biomolecules and cells. Integration of electronics with these tools simplify systems and provide platforms for robust use outside of the laboratory setting. Suspended microchannel resonators (SMRs) are sensitive microfluidic platforms used to precisely measure the buoyant mass of single cells and monolayers of protein in fluid environments. Conventionally, micro cantilever deflection is measured by the optical-lever technique, wherein a laser beam is reflected off the cantilever onto a position sensitive photodiode. This thesis introduces microchannel resonators with electronic readout, eliminating the use of external optical components for resolving the sensor's resonant frequency. Piezo resistors have been fabricated on SMRs through ion implantation integrated with the existing SMR fabrication process. We fabricated two designs: one with a cantilever length of 210 pm and resonant frequency of -347 kHz, and the other with a cantilever length of 406 pm and resonant frequency of ~92 kHz. The work here builds upon knowledge of signal transduction from static and dynamic cantilever based sensors because the piezo resistors are implemented on vacuum encapsulated devices containing fluid. Electronic readout is shown to resolve the microchannel resonance frequency with an Allan variance of 5 x 10-18 (210 pm) and 2 x 1017 (406 pm) using a 100ms gate time, corresponding to a mass resolution of 0.1 and 0.4 fg respectively. This mass resolution calculated from piezoresistive readout frequency stability, is approximately 3X better than optical readout for the 210 pm device and 1.3X for the 406 pm device using the same gate time. Resolution is expected to improve with further optimization of the system. To demonstrate the readout, histograms of the buoyant masses of a mixture of size standard polystyrene beads (with nominal diameters 1.6, 1.8, and 2.0 pm) and budding yeast cells were made.en_US
dc.format.extent120 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectHarvard University--MIT Division of Health Sciences and Technology.en_US
dc.titleElectronic readout of microchannel resonators for precision mass sensing in solution by Rumi Chunara.en_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technology
dc.identifier.oclc655896784en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record