MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An assessment of body force representations for compressor stall simulation

Author(s)
Kerner, Jonathan (Jonathan H.)
Thumbnail
DownloadFull printable version (7.466Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Edward M. Greitzer and Choon S. Tan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis examines an axial compressor body force representation constructed from 3D CFD calculations. The radial distribution of body forces is compared to that of a body force representation based on axisymmetric streamline curvature (SLC) calculations, and shown to be in qualitative agreement except in the vicinity of the blade tip. In terms of stall inception type and stall point, computations based on both representations exhibit agreement with rig test data. A parametric study is undertaken in which the magnitude of the forces in the blade tip region of both representations is reduced so as to obtain reductions in compressor pressure rise similar to those observed experimentally due to increased tip clearance. It is shown that on a back-to-back basis, a given change to the end wall forces produces similar effects on the computed stall point, whether the underlying body force representation derives from 3D CFD or SLC. Based on this result one route to capturing effects of tip clearance on stall prediction can be the development of a tip clearance body force model for use in conjunction with SLC calculations.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 71-72).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/57882
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.