A laboratory study of localized boundary mixing in a rotating stratified fluid
Author(s)
Wells, Judith R. (Judith Roberta)
DownloadFull printable version (16.56Mb)
Alternative title
Localized boundary mixing in a rotating stratified fluid
Other Contributors
Woods Hole Oceanographic Institution.
Advisor
Karl R. Helfrich.
Terms of use
Metadata
Show full item recordAbstract
Oceanic observations indicate that abyssal mixing is localized in regions of rough topography. How locally mixed fluid interacts with the ambient fluid is an open question. Laboratory experiments explore the interaction of mechanically induced boundary mixing and an interior body of linearly stratified rotating fluid. Turbulence is generated by a vertically oscillating horizontal bar, located at middepth along the tank wall. The turbulence forms a region of mixed fluid which quickly reaches a steady state height and collapses into the interior. The mixed layer thickness ... is independent of the Coriolis frequency f. N is the buoyancy frequency, co is the bar frequency, and the constant, Y=1 cm, is empirically determined by bar mechanics. In initial experiments, the bar is exposed on three sides. Mixed fluid intrudes directly into the interior as a radial front of uniform height, rather than as a boundary current. Mixed fluid volume grows linearly with time ... The circulation patterns suggest a model of unmixed fluid being laterally entrained with velocity, e Nhm, into the sides of a turbulent zone with height hm and width Lf ... where Lf is an equilibrium scale associated with rotational control of bar-generated turbulence. In accord with the model, outflux is constant, independent of stratification and restricted by rotation ... Later experiments investigate the role of lateral entrainment by confining the sides of the mixing bar between two walls, forming a channel open to the basin at one end. A small percentage of exported fluid enters a boundary current, but the bulk forms a cyclonic circulation in front of the bar. As the recirculation region expands to fill the channel, it restricts horizontal entrainment into the turbulent zone. The flux of mixed fluid decays with time. (cont.) ... The production of mixed fluid depends on the size of the mixing zone as well as on the balance between turbulence, rotation and stratification. As horizontal entrainment is shut down, longterm production of mixed fluid may be determined through much weaker vertical entrainment. Ultimately, the export of mixed fluid from the channel is restricted to the weak boundary current.
Description
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, and the Woods Hole Oceanographic Institution), 2003. Includes bibliographical references (p. 145-148).
Date issued
2003Department
Joint Program in Physical Oceanography; Woods Hole Oceanographic Institution; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary SciencesPublisher
Massachusetts Institute of Technology
Keywords
Joint Program in Physical Oceanography., Earth, Atmospheric, and Planetary Sciences., Woods Hole Oceanographic Institution.