Show simple item record

dc.contributor.advisorRobert T. Sauer.en_US
dc.contributor.authorDavis, Joseph H. (Joseph Harry), IIIen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Biology.en_US
dc.date.accessioned2010-09-01T16:29:18Z
dc.date.available2010-09-01T16:29:18Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/58089
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractRegulated intracellular protein degradation is critical for cellular viability. In many organisms, degradation controls cell-cycle progression, executes responses to stress-inducing environmental changes, and enables the rapid depletion of unwanted or deleterious proteins. In bacteria, most processive protein degradation is carried out by a family of AAA+ compartmentalized proteases. These molecular machines convert the chemical energy of ATP binding and hydrolysis into mechanical work, forcefully unfolding their substrates as a prelude to proteolysis. The AAA+ ClpXP protease, recognizes short peptide tags (degrons) in substrate proteins either directly or with the aid of dedicated specificity factors (adaptors). The prior identification and detailed biochemical characterization of an efficient ClpXP degron (the ssrA tag) and cognate adaptor (SspB) serve as powerful tools and enable the mechanistic studies presented here. In Chapter 2, I describe a collaborative investigation of substrate denaturation and degradation by ClpXP with single-molecule resolution. Detailed kinetic analysis of these experiments revealed homogenous protease activity across the population of enzymes with comparable levels of microscopic and macroscopic ClpXP activity. These experiments required the development of methods to attach ClpXP to surfaces and stabilize the multimeric enzyme at sub-nanomolar concentrations, advances that should be applicable to future single-molecule studies of complex protein machines. Subsequent chapters describe the development of molecular tools that harness our understanding of targeted proteolysis and enable small-molecule control of degradation. By engineering synthetic substrates, adaptors and proteases, I directly test models previously proposed to explain adaptor function and identify the minimal requirements for adaptor-mediated substrate delivery. Many different configurations of protease and adaptor domains lead to efficient, predictable substrate degradation and demonstrate the highly modular nature of this system. These tools allow for facile, small-molecule controlled protein degradation in vivo and should be valuable in basic research and biotechnology. I also describe a family of synthetic insulated promoters that allow predictable, context-independent levels of protein synthesis.en_US
dc.description.statementofresponsibilityby Joseph H. Davis.en_US
dc.format.extent233 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiology.en_US
dc.titleUnderstanding and harnessing energy-dependent proteolysis for controlled protein degradation in bacteriaen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biology
dc.identifier.oclc654116495en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record