Show simple item record

dc.contributor.advisorEdward F. Crawley and Brian C. Williams.en_US
dc.contributor.authorLin, Maokaien_US
dc.contributor.otherMassachusetts Institute of Technology. Computation for Design and Optimization Program.en_US
dc.date.accessioned2010-09-02T14:57:12Z
dc.date.available2010-09-02T14:57:12Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/58188
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 171-174).en_US
dc.description.abstractThis thesis proposes new methods to solve three problems: 1) how to model and solve decision-making problems, 2) how to translate between a graphical representation of systems and a matrix representation of systems, and 3) how to cluster single and multiple Design Structure Matrices (DSM). To solve the first problem, the thesis provides an approach to model decisionmaking problems as multi-objective Constraint Optimization Problems (COP) based on their common structures. A set of new algorithms to find Pareto front of multi objective COP is developed by generalizing upon the Conflict-directed A* (CDA*) algorithm for single-objective COPs. Two case studies - Apollo mission mode study and earth science decadal survey study - are provided to demonstrate the effectiveness of the modelling approach and the set of algorithms when they are applied to real world problems. For the second problem, the thesis first extends classical DSMs to incorporate different relations between components in a system. The Markov property of the extended DSM is then revealed. Furthermore, the thesis introduces the concept of "projection", which maps and condenses a system graph to a DSM based on the Markov property of DSM. For the last problem, an integer programming model is developed to encode the single DSM clustering problem. The thesis tests the effectiveness of the model by applying it to a part of a real-world jet engine design project. The model is further extended to solve the multiple DSM clustering problems.en_US
dc.description.statementofresponsibilityby Maokai Lin.en_US
dc.format.extent174 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectComputation for Design and Optimization Program.en_US
dc.titleMulti-objective constrained optimization for decision making and optimization for system architecturesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computation for Design and Optimization Program
dc.identifier.oclc640140593en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record