MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Critical enhancements of a dynamic traffic assignment model for highly congested, complex urban network

Author(s)
Wei, Zheng, S.M. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (8.812Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Moshe E. Ben-Akiva.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
To accurately replicate the highly congested traffic situation of a complex urban network, significant challenges are posed to current simulation-based dynamic traffic assignment (DTA) models. This thesis discusses these challenges and corresponding solutions with consideration of model accuracy and computational efficiency. DynaMITP, an off-line mesoscopic DTA model is enhanced. Model success is achieved by several critical enhancements aimed to better capture the traffic characteristics in urban networks. A Path-Size Logit route choice model is implemented to address the overlapping routes problem. The explicit representation of lane-groups accounts for traffic delays and queues at intersections. A modified treatment of acceptance capacity is required to deal with the large number of short links in the urban network. The network coding is revised to maintain enough loader access capacity in order to avoid artificial bottlenecks. In addition, the impacts of bicycles and pedestrians on automobile traffic is modeled by calibrating dynamic road segment capacities. The enhanced model is calibrated and applied to a case study network extracted from the city of Beijing, China. Data used in the calibration include sensor counts and floating car travel time. The improvements of the model performance are indicated by promising results from validation tests.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 109-115).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/58283
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.