Show simple item record

dc.contributor.advisorJack W. Szostak.en_US
dc.contributor.authorZhu, Ting F. (Ting Fredrick)en_US
dc.contributor.otherHarvard University--MIT Division of Health Sciences and Technology.en_US
dc.date.accessioned2010-09-02T17:27:02Z
dc.date.available2010-09-02T17:27:02Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/58299
dc.descriptionThesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractGrowth and division are essential biological processes of cellular life. A crucial question concerning the origin of cellular life is how primitive cells (protocells) lacking complex biological machinery could grow and divide. To address this question, we first developed an effective method for preparing large monodisperse (uniform-sized) vesicles through a combination of extrusion and large-pore dialysis. The development of this preparation method has led us to the discovery of a simple but efficient pathway for the growth and division of the membrane envelope of a model protocell: growth of a large multilamellar fatty acid vesicle after being fed with fatty acid micelles leads to a series of remarkable shape transformations, from an initially spherical state to a long thread-like vesicle; under modest shear forces, the thread-like vesicle divides into multiple daughter vesicles. We have also discovered a different pathway that allows the long thread-like vesicles to divide without relying on external forces. Furthermore, in the course of studying fatty acid vesicles, we have discovered a striking phenomenon: intense illumination causes dye-packed vesicles of a few microns in diameter to explode, rapidly and locally releasing the encapsulated contents. The photoactivated release of substances from exploding vesicles in a highly spatio-temporally controlled manner suggests potential applications of this phenomenon in many areas across disciplines.en_US
dc.format.extentvii, 177 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectHarvard University--MIT Division of Health Sciences and Technology.en_US
dc.titleEngineering artificial cell membranes by Ting F. Zhu.en_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technology
dc.identifier.oclc656252865en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record