dc.contributor.advisor | Franz S. Hover and Julio C. Guerrero. | en_US |
dc.contributor.author | Ambler, Charles Kirby | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Mechanical Engineering. | en_US |
dc.date.accessioned | 2010-09-03T18:33:55Z | |
dc.date.available | 2010-09-03T18:33:55Z | |
dc.date.copyright | 2010 | en_US |
dc.date.issued | 2010 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/58391 | |
dc.description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 113-115). | en_US |
dc.description.abstract | Delivery of subsea equipment and sensors is generally accomplished with unguided sinking platforms or powered autonomous underwater vehicles (AUVs). An alternative would be to augment existing platforms with navigation and guidance capability, enabling them to actively guide themselves to their destination, with minimal added complexity and power consumption. This defines a new class of AUV having 110 propulsion, which we call the Vertical Glider. This thesis investigates the challenges posed by this deployment concept, and describes in detail a prototype vertical glider that was built for initial tests. We explore through computer simulation the specific roles of various operating parameters, such as control gain, measurement noise, and process noise, on the overall vehicle performance. The prototype vehicle has been successfully pool-tested, and serves as a baseline platform for open water operations and multi-vehicle deployments. | en_US |
dc.description.statementofresponsibility | by Charles Kirby Ambler. | en_US |
dc.format.extent | 115 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Mechanical Engineering. | en_US |
dc.title | Design of an underwater vertical glider for subsea equipment delivery | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
dc.identifier.oclc | 649043154 | en_US |