MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Earth, Atmospheric, and Planetary Sciences
  • Earth, Atmospheric and Planetary Sciences - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Earth, Atmospheric, and Planetary Sciences
  • Earth, Atmospheric and Planetary Sciences - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Crustal accretion and evolution at slow and ultra-slow spreading mid-ocean ridges

Author(s)
Hosford, Allegra
Thumbnail
DownloadFull printable version (17.20Mb)
Other Contributors
Woods Hole Oceanographic Institution.
Advisor
Jian Lin and Maurice Tivey.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Half of the ocean crust is formed at spreading centers with total opening rates less than 40 km/Myr. The objective of this Thesis is to investigate temporal variations in active ridge processes and crustal aging at slow-spreading centers by comparing axial crustal structure with that on conjugate flanks of the slow-spreading Mid-Atlantic Ridge (MAR) (full rate, 20 km/Myr) and the ultra-slow spreading Southwest Indian Ridge (SWIR) (full rate, 14 km/Myr). Seismic refraction data collected along the rift valley and flanking rift mountains of the OH-1 segment (35ʻN) at the MAR show that the entire crustal section is constructed within a zone that is less than 5 km wide. Shallow-level hydrothermal circulation within the axial valley is suggested by the rift mountain seismic profiles, which show that the upper crust is 20% thinner and 16% faster along strike than zero-age crust. These effects probably result from fissure sealing within the extrusive crust. Deeper crustal velocities remain relatively constant at the segment midpoint within the first 2 Myr, but are reduced near the segment offsets presumably by faulting and fracturing associated with uplift out of the rift valley.
 
(cont.) A temporal variation in axial melt supply is suggested by a 15% difference in along-strike crustal thickness between the rift valley and rift mountains, with relatively less melt supplied today than 2 Ma. Crustal accretion at the SWIR appears to occur in a similar manner as at the MAR, although gravity and seismic data indicate that the average crustal thickness is 2-4 km less at theultra-slow spreading SWIR. A 25 Myr record on both flanks of the ridge shows that seafloor spreading has been highly asymmetric through time, with 35% faster crustal accretion on the Antarctic (south) plate. A small-offset non-transform discontinuity between two ridge segments is just as stable as two neighboring transform discontinuities, although a single mantle Bouguer gravity anomaly centered over the non-transform offset indicates that this boundary does not significantly perturb underlying mantle flow. Off-axis magnetic anomalies are recorded with high fidelity despite the very low spreading rates and the absence of a basaltic upper crust in one area. The lower crust may be the dominant off-axis carrier of the magnetic signal, contrary to traditionalmodels of crustal magnetic structure. Morphological and gravity data show evidence of asymmetric crustal accretion across the SWIR ridge axis, with slightly warmer mantletemperatures beneath the slower-spreading African (north) plate.
 
Description
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric and Planetary Sciences, and the Woods Hole Oceanographic Institution), 2001.
 
Page 250 blank.
 
Includes bibliographical references.
 
Date issued
2001
URI
http://hdl.handle.net/1721.1/58441
Department
Massachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences.; Joint Program in Oceanography.; Woods Hole Oceanographic Institution.
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences., Joint Program in Oceanography., Woods Hole Oceanographic Institution.

Collections
  • Earth, Atmospheric and Planetary Sciences - Ph.D. / Sc.D.
  • Earth, Atmospheric, and Planetary Sciences - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.