Aerosol-Cloud interactions : a new perspective in precipitation enhancement
Author(s)
Gunturu, Udaya Bhaskar
DownloadFull printable version (20.08Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences.
Advisor
Ronald G Prinn.
Terms of use
Metadata
Show full item recordAbstract
Increased industrialization and human activity modified the atmospheric aerosol composition and size-distribution during the last several decades. This has affected the structure and evolution of clouds, and precipitation from them. The processes and mechanisms by which clouds and precipitation are modified by changes in aerosol composition and size-distribution are very intricate. The objective of this thesis is to improve the understanding of the processes and mechanisms through which the changes in aerosol concentrations impact the evolution of deep convective clouds and precipitation formation. We develop a new coupled model in which a very detailed model of aerosol activation is coupled to a three-dimensional cloud resolving model. This coupled model can accurately represent different kinds of aerosol populations. This coupled model is used to investigate the impact of changing aerosol concentrations on the dynamics, microphysical evolution and precipitation formation in deep convective clouds. We examine the theories of aerosol activation, and the representation of aerosol activation in cloud models. The limitations of the extant methods of representation of aerosol activation in cloud models are evaluated. Then we descibe the components of the coupled model - Modified Eulerian and Lagrangian Aerosol Model (MELAM) and the Cloud Resolving Model (CRM). The features of these two component models with respect to aersol activation and cloud formation are discussed. The evaluation of the coupled model by simulation of a deep convertive event observed during the INDian Ocean EXperiment (INDOEX) by statistcal comparison of observed and simulated cloud fields shows that the coupled model can simulate deep convective events reasonably well. We present a study of the senstivity of the model to initial thermodynamic conditions (CAPE). Different initial thermodynamic conditons sampled during the INDOEX are used to initialize the coupled model and, the structure and evolution of the deep convective event are discussed. The study sheds new light on the respone of deep convection to CAPE. It is found that when the atmosphere has moderate CAPE, the precipitation forming processes are very active and when the CAPE is (cont.) low or high, they are comparatively less efficient. As the most important part of our study, we examine the response of deep convection to changing initial aerosol concentration. Different aerosol concentrations from those representing pristine to polluted atmospheres are considered. We look at the buoyancy of the cloud and the microphysical evolution. It is found that the dynamics and microphysics are tightly coupled and we infer that to understand aerosol-cloud interactions in deep convective clouds, both - dynamics and microphysics - and their interaction have to be taken into consideration. Our results show that the response of a deep convective cloud to changing aerosol concentration is very different from the much well understood reponse of shallow clouds or small cumulus clouds. In general, increase in aerosol concentratin is seen to invigorate convection and lead to greater condensate. Although the cloud droplet size decreases, collision-coalescence is not completely inefficient. The precipitation in high aerosol regime is seen to occure in short spells of intense rain. A very interesting anomalous response of deep convection to initial aerosol concentration is observed at intermediate aerosol concentrations. The cloud lifetime, and precipitation are seen to increase in this regime. A possible mechanism to explain this anomalous behavior is proposed and the available circumstantial support for the mechanism from extant observations is presented. It is proposed that the efficient collection of rain and cloud droplets by ice and graupel particles in the middle troposphere is primarily responsible for this increased cloud lifetime and precipitation.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2010. Cataloged from PDF version of thesis. Includes bibliographical references (p. 171-184).
Date issued
2010Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary SciencesPublisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.