MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Localization instability and the origin of regularly-spaced faults in planetary lithospheres

Author(s)
Montési, Laurent Gilbert Joseph, 1973-
Thumbnail
DownloadFull printable version (30.21Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences.
Advisor
Maria T. Zuber.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Brittle deformation is not distributed uniformly in planetary lithospheres but is instead localized on faults and ductile shear zones. In some regions such as the Central Indian Basin or martian ridged plains, localized shear zones display a characteristic spacing. This pattern can constrain the mechanical structure of the lithosphere if a model that includes the development of localized shear zones and their interaction with the non-localizing levels of the lithosphere is available. I construct such a model by modifying the buckling analysis of a mechanically-stratified lithosphere idealization, by allowing for rheologies that have a tendency to localize. The stability of a heological system against localization is indicated by its effective stress exponent, ne. That quantity must be negative for the material to have a tendency to localize. I show that a material deforming brittly or by frictional sliding has ne < 0. Localization by shear heating or grain size feedback in the ductile field requires significant deviations from non-localized deformation conditions. The buckling analysis idealizes the lithosphere as a series of horizontal layers of different mechanical properties. When this model is subjected to horizontal extension or compression, infinitesimal perturbation of its interfaces grow at a rate that depends on their wavelength. Two superposed instabilities develop if ne < 0 in a layer overlying a non-localizing substratum. One is the classical buckling/necking instability. The other gives rise to regularly-spaced localized shear zones, with a spacing proportional to the thickness of the localizing layer, and dependent on ne. I call that second instability the localization instability.
 
(cont.) Using the localization instability, the depth to which fault penetrate in the Indian Ocean and in martian ridged plains can be constrained from the ridge spacing. The result are consistent with earthquake data in the Indian Ocean and radiogenic heat production on Mars. It is therefore possible that the localization instability exerts a certain control on the formation of fault patterns in planetary lithospheres.
 
Description
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2002.
 
Includes bibliographical references (p. 259-296).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/59099
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.