Show simple item record

dc.contributor.advisorCharlie Fine, Abbott Weiss and Henry Marcus.en_US
dc.contributor.authorSmith, Emily (Emily C.)en_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2010-10-12T18:02:12Z
dc.date.available2010-10-12T18:02:12Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/59176
dc.descriptionThesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; in conjunction with the Leaders for Global Operations Program at MIT, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 70-71).en_US
dc.description.abstractIntel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance for judging customer orders when the market changes. As a result, during the economic downturn of Q3 and Q4 '08, Intel's model could not predict how much billings would decrease. The demand forecast had large amounts of error caused by the bullwhip effect (order amplification in a supply chain). This project creates a new demand forecast model in two phases. The first phase investigated the supply chain of OEMs and Retailers. The second phase of the project used the supply chain information discovered in phase one to create a new demand forecast that reduces the error caused by the bullwhip effect. The first phase determined that the average time it takes a CPU to go from Intel to end customer purchase is seventeen weeks. The first phase also indentified ownership of products throughout the supply chain and parties making purchase decisions. The supply chain information was then used in the second phase of the project to create a demand forecast model. The new model is a heuristic model that simulates quarterly purchase decisions of retailers and OEMs including lead times and inventory. The resulting model allows Intel to monitor and react to consumption changes faster than waiting for customers to change their demand forecasts. The model also provides a better forecast during times of change. The model reduces the error due to the bullwhip effect and indentifies early when a downturn or upturn is going to happen in ordering behavior.en_US
dc.description.statementofresponsibilityby Emily Smith.en_US
dc.format.extent71 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectMechanical Engineering.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleReducing the demand forecast error due to the bullwhip effect in the computer processor industryen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.description.degreeM.B.A.en_US
dc.contributor.departmentLeaders for Global Operations Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentSloan School of Management
dc.identifier.oclc659781021en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record