Analysis of the product development process for geographically distant teams in vehicle tophat design phases
Author(s)
Puerto Valdez, Antonio del
DownloadFull printable version (16.94Mb)
Other Contributors
System Design and Management Program.
Advisor
Christopher L. Magee.
Terms of use
Metadata
Show full item recordAbstract
The current global economic recession is putting pressure to increase model variation on the car makers, while at the same time leveraging highly efficient and proven platforms and product development assets globally is becoming critical. In order to be competitive, OEMs would prefer to use their low cost country branches that have competitive. engineering capabilities to reduce costs of development. It is then important that the organizations in these countries have a well defined process and the expertise to effectively interact with the OEM headquarters where the executive decision makers reside; and with the Design Studio, the entity in charge of designing the appearance of the reverse-engineered components. This thesis develops such a process from study of the necessary requirements, construction of a DSM and consideration of past attempts at programs where engineering and studio design were not co-located. The process to engineer a vehicle exterior and interior is called the feasibility process. In the OEM under investigation, this method is conducted at a component level to leverage the detailed expertise of its Engineering department and suppliers. This is done after several styling options are studied and research through customer clinics to narrow the number of designs that are made feasible to Engineering to normally one. This approach leads to several iterations when each component changes and affects others or the overall system performance. In order to integrate all feasibility changes and achieve styling intent, Engineering must communicate the constraints and Design Studio must understand them and re-style the appearance to accomplish the functional performance. Upon analysis of the OEM engineered functional teams and the components that strongly affect appearance the key sub-system expertise is defined for low cost countries to develop knowledge on them. In addition, from construction of a DSM, we were able to clearly identify the Design Studio intensive process loop and the concurrent engineering loop within the product development process. Moreover, the information transfer interfaces were clearly recognized. These interfaces were reviewed in former distant interaction projects and showed additional workload in the preparation of information prior to the communication process, while in co-located projects, this happens in real time while and where communication takes place. Nevertheless, awareness of the component changes helps Design Engineers to be aware of the system implication of the change and reduce the amount of iterations by addressing them prior to Engineering cut-off, to allow the Design Studio to focus only on the appearance of the integrated system. In the same way, Design Engineering helps the Design Studio to assess additional surface changes to achieve surface quality before surfaces are released to Engineering. Therefore Design Engineering must be co-located at both ends: where Engineering is preparing functional information and where the Studio prepares styling information. The resulting spoke and hub model, establishes the Design Engineer as the single point of contact for daily interaction. Conference calls and virtual tools have been very useful for the day-to-day communication, however scheduled and periodical face-to-face meetings between distant the Design Engineering teams has been proven to provide good results to enhance team identity, convey priorities and clarify difficult issues. This approach has been used formerly in several past programs, yet all of them have been conducted with a US based Design Studio and an overseas Engineering team. The product development process used in these projects was not the one normally used by the US OEM but that of its Japanese Partner Company, which is more disciplined in terms of surface changes. This forces Engineering to front-load the process to address not only component but also system level problems. Similarly, late styling changes are kept to a minimum to avoid unplanned iterations of component, relational and pure design feasibility. One important enabler to reduce the required interaction and thus eliminate lengthy and noisy communication is to re-use legacy program information by leveraging platform knowledge. Since platforms are initially launched designing a base tophat, it is important to update such information after the design is verified and re-use it as well as those resources that generated and that understand the system's performance. This approach will improve platform level quality and time to provide feasibility for every platform's tophat. Models are important tools for the Studio to understand the overall integration of surfaces and the clarification of the idea "is it really what I think it is?" by allowing the designers to understand proportion and shape in a physical model as well as the real integration of surfaces continuity through daylight revisions prior to tooling kick-off. Additionally it is an important aid to convey a lot of information implicit in the surfaces to the top management of the OEM showing the status of the latest feasible design for which cost and quality targets are recognized. Nonetheless, models are also important for engineers to understand part transitions, radii grain execution and several other details that may not impact functionality but are essential for leadership in craftsmanship. This is why engineers must have access to a detailed model that accurately represents Design Studio's vision on the execution of such details.
Description
Thesis (S.M. in System Design and Management)--Massachusetts Institute of Technology, Engineering Systems Division, 2010. Cataloged from PDF version of thesis. Includes bibliographical references (p. 119-122).
Date issued
2010Department
System Design and Management Program.; Massachusetts Institute of Technology. Engineering Systems DivisionPublisher
Massachusetts Institute of Technology
Keywords
Engineering Systems Division., System Design and Management Program.