MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probing metal nanoparticles and assemblies with analytical ultracentrifugation

Author(s)
Carney, Randy (Randy Patrick)
Thumbnail
DownloadFull printable version (9.157Mb)
Alternative title
Synthesis, characterization, and fractionation of cell penetrating gold nanoparticles
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Francesco Stellacci.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Analytical Ultracentrifugation (AUC) is a powerful tool to obtain statistically relevant size and shape measurements for macromolecular systems. Metal nanoparticles coated by a ligand shell of thiolated molecules provide diverse functionality, from targeted cellular delivery to the formation of complex assemblies. Here I show that AUC can be used to determine particle size distribution, ligand shell density, shape, and hydrodynamic radius. It can also be used to probe complex mixtures of nanoparticle assemblies, from 2D dimers and chains, to 3D trimers, tetramers, and higher order assemblies, from a consideration of their hydrodynamic shape factor and its relation to the sedimentation coefficient. With AUC, the ease of sample preparation, ligand shell information, and dramatic increase in sample size are improvements compared with electron microscopy, and the ability to probe multiple, discrete absorbing wavelengths and globally analyze with interference information offers a measured improvement compared with dynamic light scattering (DLS). This work describes multiple calibrations and considerations as well as theoretical contributions concerning the application of AUC to nanoparticle systems
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2010.
 
Includes bibliographical references (p. 42-43).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/59234
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.