MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

State estimation of the Labrador Sea with a coupled sea ice-ocean adjoint model

Author(s)
Fenty, Ian Gouverneur
Thumbnail
DownloadFull printable version (13.07Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences.
Advisor
Carl Wunsch.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Sea ice (SI) and ocean variability in marginal polar and subpolar seas are closely coupled. SI variability in the Labrador Sea is of climatic interest because of its relationship to deep convection/mode water formation, carbon sequestration, and Northern Hemisphere atmospheric patterns. Historically, quantifying the link between the region's observed SI and oceanic variability has been limited due to in situ observation paucity and technical challenges associated with synthesizing ocean and SI observations with a three-dimensional time-evolving dynamically consistent numerical model. To elaborate upon the relationship between SI and ocean variability, a one year (1996- 1997) state estimate of the ocean and sea ice state in Labrador Sea and Baffin Bay is constructed and analyzed. The estimate is a synthesis of a regional coupled 32 km ocean and sea ice model with a suite of contemporary in situ and satellite hydrographic and SI data. The synthesis of SI data is made possible with the (novel) adjoint of a thermodynamic SI model. Model and data are made consistent, in a least-squares sense, by iteratively adjusting several control variables, such as ocean initial and lateral open boundary conditions and the atmospheric state, to minimize an uncertainty-weighted model-data misfit cost function. It is shown that the SI pack attains a state of quasi-equilibrium in mid-March during which net SI growth/melt approaches zero; newly-formed SI diverges from coastal areas and converges, via wind/ocean forcing, in the marginal ice zone (MIZ). It is further shown that SI converging in the MIZ is primarily ablated by turbulent ocean-SI enthalpy fluxes. The primary source of energy required for sustained MIZ ice ablation is revealed to be the sensible heat reservoir of the subtropical-origin subsurface waters. Enthalpy from the heat reservoir is entrained into the mixed layer via buoyancy loss-driven convective deepening and brought to the SI via vertical mixing. An analysis of ocean surface buoyancy fluxes reveals a critical role of low-salinity upper ocean anomalies for the advancement of SI seaward of the Arctic Water/Irminger Water thermohaline front. Anomalous low-salinity waters slow the rate of buoyancy loss-driven mixed layer deepening, shielding an advancing SI pack from the subsurface heat reservoir, and are conducive to a positive surface stratification enhancement feedback from SI meltwater release, both of which extend SI lifetimes. Preliminary analysis of two additional one-year state estimates (1992-1993, 2003-2004) suggests that interannual hydrographic variability provides a first-order explanation for SI maximum extent anomalies. Additional research on the mechanisms controlling the origin and distribution of upper ocean salinity anomalies is required to further understand observed SI variability in the northwest North Atlantic.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2010.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student submitted PDF version of thesis.
 
Includes bibliographical references (p. 262-277).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/59575
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.