Show simple item record

dc.contributor.advisorRaúl A. Radovitzky.en_US
dc.contributor.authorJason, Amanda Marieen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.date.accessioned2010-10-29T18:09:34Z
dc.date.available2010-10-29T18:09:34Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/59676
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 75-77).en_US
dc.description.abstractThe purpose of the work in this thesis was to develop a finite element model of a helmet with various additional protective devices and to investigate how the personal protective equipment system affects the mechanical response of a human head subjected to a blast. Finite element models of the helmet with and without faceshields and goggles were developed from geometries of the Advanced Combat Helmet and the Enhanced Combat Helmet provided by the Natick Soldier Research, Development and Engineering Center. The helmet models were coupled with a simplified version of the existing DVBIC/MIT Full Head Model and subjected to a frontal 1 MPa blast for a duration of 1 ms using a computational framework suitable for simulating fluid-solid dynamic interactions. This framework was validated against experimental results of blasts carried out by the Carderock Division of the Naval Sea Systems Command Warfare Centers. The intracranial stress contours taken from these simulations suggest that the protective device systems alter the loading pattern experienced by the head as compared to the addition of a simple helmet. Pressure-time histories obtained from various points in the head indicate that the protective device systems reduce and broaden pressure peaks within the intracranial cavity, potentially mitigating the effects of blast-induced traumatic brain injury. Keywords: Blast Mitigation, Faceshield, Protective Devices, Blast Waves, Numerical Simulations, Traumatic Brain Injury.en_US
dc.description.statementofresponsibilityby Amanda Marie Jason.en_US
dc.format.extent77 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleFacial protective devices for blast-induced traumatic brain injury mitigationen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc668214636en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record