Show simple item record

dc.contributor.advisorM.L. Cummings.en_US
dc.contributor.authorRathje, Jason Men_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.date.accessioned2010-10-29T18:13:06Z
dc.date.available2010-10-29T18:13:06Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/59690
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 133-134).en_US
dc.description.abstractDeciding if and what objects should be engaged in a Ballistic Missile Defense System (BMDS) scenario involves a number of complex issues. The system is large and the timelines may be on the order of a few minutes, which drives designers to highly automate these systems. On the other hand, the critical nature of BMD engagement decisions suggests exploring a human-in-the-loop (HIL) approach to allow for judgment and knowledge-based decisions, which provide for potential automated system override decisions. This BMDS problem is reflective of the role allocation conundrum faced in many supervisory control systems, which is how to determine which functions should be mutually exclusive and which should be collaborative. Clearly there are some tasks that are too computationally intensive for human assistance, while other tasks may be completed without automation. Between the extremes are a number of cases in which degrees of collaboration between the human and computer are possible. This thesis motivates and outlines two experiments that quantitatively investigate human/automation tradeoffs in the specific domain of tracking problems. Human participants in both experiments were tested in their ability to smooth trajectories in different scenarios. In the first experiment, they clearly demonstrated an ability to assist the algorithm in more difficult, shorter timeline scenarios. The second experiment combined the strengths of both human and automation to create a human-augmented system. Comparison of the augmented system to the algorithm showed that adjusting the criterion for having human participation could significantly alter the solution. The appropriate criterion would be specific to each application of this augmented system. Future work should be focused on further examination of appropriate criteria.en_US
dc.description.statementofresponsibilityby Jason M. Rathje.en_US
dc.format.extent134 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleHuman-automation collaboration in occluded trajectory smoothingen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc668237757en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record