MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Runtime verification for stochastic systems

Author(s)
Wilcox, Cristina M
Thumbnail
DownloadFull printable version (9.342Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Brian C. Williams.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We desire a capability for the safety monitoring of complex, mixed hardware/software systems, such as a semi-autonomous car. The field of runtime verification has developed many tools for monitoring the safety of software systems in real time. However, these tools do not allow for uncertainty in the system's state or failure, both of which are essential for the problems we care about. In this thesis I propose a capability for monitoring the safety criteria of mixed hardware/software systems that is robust to uncertainty and hardware failure. I start by framing the problem as runtime verification of stochastic, faulty, hidden-state systems. I solve this problem by performing belief state estimation over a novel set of models that combine Büchi automata, for modeling safety requirements, with probabilistic hierarchical constraint automata, for modeling mixed hardware/software systems. This method is innovative in its melding of safety monitoring techniques from the runtime verification community with probabilistic mode estimation techniques from the field of model-based diagnosis. I have verified my approach by testing it on automotive safety requirements for a model of an actuator component. My approach shows promise as a real-time safety monitoring tool for such systems.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 97-101).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/59701
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.