Show simple item record

dc.contributor.advisorJames I. Hileman.en_US
dc.contributor.authorDonohoo-Vallett, Pearl Elizabethen_US
dc.contributor.otherMassachusetts Institute of Technology. Technology and Policy Program.en_US
dc.date.accessioned2010-10-29T18:38:05Z
dc.date.available2010-10-29T18:38:05Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/59779
dc.descriptionThesis (S.M. in Technology and Policy)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 74-78).en_US
dc.description.abstractMany of the nation's largest airports, including Los Angeles International Airport, the Hartsfield-Jackson Atlanta International Airport, Chicago O'Hare International Airport and Washington Dulles International Airport are located within areas designated by the EPA as having ambient particulate matter concentrations that exceed National Ambient Air Quality standards. When inhaled, fine particulate matter can enter the blood stream from the lungs and increase the risk of illness and premature mortality. This thesis examines the potential of two jet fuel types, ultra low sulfur jet fuel and synthetic paraffinic kerosene, to reduce aviation's contribution to ambient particulate matter concentrations. Scaling factors were developed for airport criteria pollutant emissions to model alternative jet fuels in aircraft and ground support equipment. These linear scaling factors were based on currently published studies comparing standard diesel and jet fuels with alternative jet fuels. It was found that alternative jet fuels lower or maintain all air pollutant emissions considered (primary particulate matter, sulfur oxides, nitrous oxides, unburned hydrocarbons and carbon monoxide) for both aircraft and ground support equipment. To quantify the potential benefits of changing fuel composition on ambient particulate matter concentrations, a study of the Atlanta Hartsfield Jackson International Airport was completed using both emissions inventory analysis and atmospheric modeling. The atmospheric modeling captures both primary particulate matter and other emissions that react in the atmosphere to form secondary particulate matter. It was found that the use of an ultra low sulfur jet fuel in aircraft gas turbines could reduce the primary particulate matter inventory by 37% and synthetic paraffinic kerosene could reduce the primary particulate matter inventory by 64%. The atmospheric modeling predicts that an ultra low sulfur jet fuel in aircraft could reduce ambient particulate matter concentrations due to aircraft by up to 57% and synthetic paraffinic kerosene could reduce particulate matter concentrations due to aircraft by up to 67%. Thus, this study indicates that the majority of air quality benefits at Atlanta Hartsfield Jackson International Airport that could be derived from the two fuels considered can be captured by removing the sulfur from jet fuel through the use of an ultra low sulfur jet fuel.en_US
dc.description.statementofresponsibilityby Pearl Donohoo.en_US
dc.format.extent98 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectTechnology and Policy Program.en_US
dc.titleScaling air quality effects from alternative jet fuel in aircraft and ground support equipmenten_US
dc.typeThesisen_US
dc.description.degreeS.M.in Technology and Policyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.identifier.oclc671243908en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record