A Comparative Analysis of Reinforcement Learning Methods
Author(s)
Mataric, Maja
DownloadAIM-1322.ps (1.377Mb)
Additional downloads
Metadata
Show full item recordAbstract
This paper analyzes the suitability of reinforcement learning (RL) for both programming and adapting situated agents. We discuss two RL algorithms: Q-learning and the Bucket Brigade. We introduce a special case of the Bucket Brigade, and analyze and compare its performance to Q in a number of experiments. Next we discuss the key problems of RL: time and space complexity, input generalization, sensitivity to parameter values, and selection of the reinforcement function. We address the tradeoffs between the built-in and learned knowledge and the number of training examples required by a learning algorithm. Finally, we suggest directions for future research.
Date issued
1991-10-01Other identifiers
AIM-1322
Series/Report no.
AIM-1322
Keywords
reinforcement, learning, situated agents, inputsgeneralization, complexity, built-in knowledge