Show simple item record

dc.contributor.advisorT. Alan Hatton and Kenneth A. Smith.en_US
dc.contributor.authorAnnavarapu, V. N. Ravikanth (Venkata Nagandra Ravikanth)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemical Engineering.en_US
dc.date.accessioned2010-11-08T17:38:36Z
dc.date.available2010-11-08T17:38:36Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/59872
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractThe focus of this work was on developing a novel scalable size based separation technology for nonmagnetic particles in the submicron size range utilizing magnetophoretic forces. When a nonmagnetic particle is immersed in a magnetic fluid and subjected to magnetic field gradients, it behaves like a magnetic hole and experiences magnetic buoyancy forces proportional to its volume. This size dependence of magnetic buoyancy forces can be exploited to selectively focus larger nonmagnetic particles from a mixture and thus we can fractionate nonmagnetic particles on the basis of size. We designed a separation system composed of a regular array of iron obstacle posts which utilized magnetic buoyancy forces to perform size based separations. A Lagrangian particle tracking model was developed which could describe the behavior of a nonmagnetic particle in regions of inhomogeneous magnetic field gradients. Particle trajectories were simulated for a number of obstacle array geometries and over a range of operating conditions in order to understand the nature of the magnetic buoyancy force and aid in separation system design. Based on the results of the trajectory simulations, an experimental set up was conceptualized and built to demonstrate capture and separation of nonmagnetic particles using magnetic buoyancy forces. Capture visualization experiments were performed utilizing fluorescence microscopy which showed visual evidence of focusing and preferential capture of larger nonmagnetic particles. Experiments also yielded results qualitatively consistent with the Lagrangian trajectory model. Pulse chromatography experiments were also performed in order to quantitatively understand the capture and separation behavior. The results obtained showed quantitative evidence of preferential capture of larger particles. Particle capture efficiencies were compared with predictions from simulations and were found to be qualitatively consistent. Finally, the potential of this separation technology was demonstrated by performing proof-of-concept separation experiments with a mixture of 840 nm and 240 nm particles.en_US
dc.description.statementofresponsibilityby V. N. Ravikanth Annavarapu.en_US
dc.format.extent204 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemical Engineering.en_US
dc.titleSize based separation of submicron nonmagnetic particles through magnetophoresis in structured obstacle arraysen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.identifier.oclc672403401en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record