MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization of a pre-curved needle for use in distal tip manipulation mechanism

Author(s)
Franklin, Jeremy Contini
Thumbnail
DownloadFull printable version (9.574Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Alexander H. Slocum.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The knowledge and technical expertise required for the development of telerobotic systems capable of needle distal tip manipulation is the focus of this thesis. An extensive prior literature review was conducted to examine (1) the current medical devices available to pulmonary radiologists and (2) the current steerable mechanism state of the art. Interviews were also conducted with interventional radiology and cardiology physicians at the Massachusetts General Hospital to define the mechanism functional requirements for a telerobotic system and a first order analysis was undertaken to evaluate three strategies. The selected strategy was based on the concept of deploying a flexible pre-curved stylet from a concentric straight cannula. Analytical models were developed to (1) understand what material properties are required to recover from the imposed strains, (2) compare stylet stiffness relative to each other and the cannulas, and (3) calculate the deployment and retraction forces required for moving the stylet relative to the cannula. Sixteen Nitinol stylets were prototyped and experiments were performed with four different diameter cannulas and an experimental setup and methodology was developed to measure the deployment and retraction forces. The data collected for 48 permutations of stylet diameter, stylet bend radius, and cannula gauge were compared to the analytical model. Retraction forces were measured between .277 and 13.9N, and deployment forces were measured between .191 and 6.95N. For a given cannula it was found that force increases as stylet diameter increases and bend radius decreases. The analytical model better matched the experimental retraction and deployment measurements for the smaller stylet diameters (0.508 and 0.635 mm) with low friction, retraction and deployment forces. It was found that the retraction and deployment force does not necessarily increase or decrease with cannula diameter and it was found that the stylets drawn through the 16 gauge cannula consistently had the lowest deployment and retraction forces recorded across the four cannulas tested. Ultimately, the experimental and analytical tools developed in this thesis helped us select appropriate needle materials and mechanism components for use in a telerobotic system that is under development.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 59-61).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/59886
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.