Show simple item record

dc.contributor.advisorIan W. Hunter.en_US
dc.contributor.authorBenson, Christopher Leeen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2010-11-08T17:41:45Z
dc.date.available2010-11-08T17:41:45Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/59892
dc.descriptionThesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 58-59).en_US
dc.description.abstractSmall scale unmanned aerial vehicles (UAVs) have proven themselves to be useful, but often too noisy for certain operations due to their rotary motors. This project examined the feasibility of using an almost silent linear actuator to power a flapping wing UAV. In order to this, a wing was designed and installed into a test set-up to replicate normal flight conditions of flapping wing flight (FWF). The designs of the wing, the test set-up and the actual experiments were biomimetic, looking to approximate the flight of real birds. The main goal of this study was to characterize a novel new linear actuator being developed in the Bio-Instrumentation Lab at MIT based on important parameters for FWF including the mounting position, the frequency of oscillation and the amplitude of oscillation of the wing. Ultimately the linear actuator performed well under all of the tests and was only limited by the control software. When the frequency and amplitude of oscillation were raised, the force on the actuator increased. The mounting position ended up not having a correlation with the force on the actuator, leading one to believe that it is not a critical parameter for this actuator-wing system.en_US
dc.description.statementofresponsibilityby Christopher L. Benson.en_US
dc.format.extent59 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleLinear actuator powered flapping wingen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc676690605en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record