| dc.contributor.advisor | John G. Kassakian. | en_US |
| dc.contributor.author | Gogoana, Radu | en_US |
| dc.contributor.other | Massachusetts Institute of Technology. Dept. of Mechanical Engineering. | en_US |
| dc.date.accessioned | 2010-11-08T17:44:43Z | |
| dc.date.available | 2010-11-08T17:44:43Z | |
| dc.date.copyright | 2010 | en_US |
| dc.date.issued | 2010 | en_US |
| dc.identifier.uri | http://hdl.handle.net/1721.1/59912 | |
| dc.description | Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010. | en_US |
| dc.description | Cataloged from PDF version of thesis. | en_US |
| dc.description | Includes bibliographical references (p. 33). | en_US |
| dc.description.abstract | This is an analysis of the feasibility of electric vehicle rapid-charging stations at power levels above 300 kW. Electric vehicle rapid-charging (reaching above 80% state-of-charge in less than 15 minutes) has been demonstrated, but concerns have been raised about the high levels of electrical power required to recharge a high-capacity battery in a short period of time. This economic analysis is based on an existing project run by MIT's Electric Vehicle Team, of building a 200-mile range battery electric sedan capable of recharging in 10 minutes. The recharging process for this vehicle requires a power source capable of delivering 350 kW; while this is possible in controlled laboratory environments, this thesis explores the viability of rapid-charging stations on the grid-scale and their capability of servicing the same volume of vehicles as seen by today's gas stations. At this volume, building a rapid-charging station is not only viable, but has the potential to become a lucrative business opportunity. | en_US |
| dc.description.statementofresponsibility | by Radu Gogoana. | en_US |
| dc.format.extent | 34 p. | en_US |
| dc.language.iso | eng | en_US |
| dc.publisher | Massachusetts Institute of Technology | en_US |
| dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
| dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
| dc.subject | Mechanical Engineering. | en_US |
| dc.title | Assessing the viability of level III electric vehicle rapid-charging stations | en_US |
| dc.type | Thesis | en_US |
| dc.description.degree | S.B. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
| dc.identifier.oclc | 676695878 | en_US |