Show simple item record

dc.contributor.advisorMartin L. Culpepper.en_US
dc.contributor.authorGafford, Joshua Ben_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2010-11-08T17:44:59Z
dc.date.available2010-11-08T17:44:59Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/59914
dc.descriptionThesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 50).en_US
dc.description.abstractThis research focuses on the feasibility of using micromilling as a process for fabricating the flexural body of mesoscale nanopositioners. A desire to fabricate non-silicon microflexures for more favorable material properties and flexural responses has led MIT's Precision Compliant Systems lab to investigate the use of various metals in the design of mesoscale six-axis HexFlex nanopositioners. Micromilling is being sought as an alternative method of manufacturing HexFlex flexural bodies due to its inherent process and material flexibility. Cutting forces were approximated (and verified using FEM and previously-measured results) in order to select cutting parameters that would avoid tool failure and ensure workpiece integrity. Several HexFlex devices were successfully micromilled from various aluminum alloys. Total machining time, including setup and tool changes, was around 1.5 hours per part. The integrity of each part was verified using optical microscopy and white-light interferometry to inspect for any microcracks or otherwise unfavorable by-products of the milling process. Ultimately, it was shown that micromilling is a feasible process for manufacturing low-volume to-spec mesoscale nanopositioners (±3 [mu]m) with surface roughnesses of less than 0.300 [mu]m. Process improvements are suggested based on observations before and during the machining process.en_US
dc.description.statementofresponsibilityby Joshua B. Gafford.en_US
dc.format.extent57 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleFabrication of high-quality microflexures using micromilling techniquesen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc676696175en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record