MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Control of a nonlinear underactuated system with adaptation, numerical stability verification, and the use of the LQR Trees algorithm

Author(s)
Rust, Ian Charles
Thumbnail
DownloadFull printable version (5.357Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Jean-Jacques E. Slotine.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Underactuated robotics, though surrounded by an established body of work, has certain limitations when nonlinear adaptive control principles are applied. This thesis applies a nonlinear adaptative controller that avoids many of these limitations using alterations inspired by the control of a similar underactuated system, the cart-pole. Due to the complexity of the system, a sums-of-squares MATLAB toolbox is used to generate a suitable Lyapunov Candidate used for proofs of stability, with claims of local stability made using Barbalat's Lemma. This provides us with a local domain of attraction for the altered classical nonlinear adaptive controller. In addition, the algorithm known as LQR Trees is applied to the system in order to create a controller with a larger region of attraction and lower torque requirements, though without an adaptive component. Both control systems are implemented in simulations using MATLAB.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 54).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/59934
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.