Show simple item record

dc.contributor.advisorMartin Luther Culpepper.en_US
dc.contributor.authorRamirez, Aaron Eduardoen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2010-11-08T17:49:02Z
dc.date.available2010-11-08T17:49:02Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/59938
dc.descriptionThesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 67).en_US
dc.description.abstractThis thesis discusses the design, characterization and optimization of a low-cost additive rapid-prototyping tool head for a technology known as Fused Filament Fabrication for use in an educational curriculum. Building a 3D printer represents an excellent educational opportunity as it requires knowledge in electronics, mechanics, and thermal-fluids engineering; this particular design also includes a flexural bearing, introducing students to a new and important class of machine element. Polymer flow through the extruder is modeled as pipe flow with pressure drops using Bernoulli's equation with viscous losses; the model predicts that the pressure required to extrude is proportional to 1/d⁴' , where d is the nozzle diameter. Three different extruder designs are considered; a piston-based design, an auger-based design, and a pinch-wheel design. The pinch wheel design best meets the functional requirements after comparing the designs based on factors such as complexity and controllability. Flexural bearings are selected to provide a preload against the polymer filament; HDPE was chosen to be the flexure material after considering factors such as water-jet machinability and yield stress to elastic modulus ratio. Thermal imaging shows that the temperature profile along the heater barrel is not uniform, with the largest variation being 80±2.8°C in large part due to errors in heater wire distribution during assembly. An exponential relationship is observed between the force required to extrude versus the temperature of the heater barrel with the force required to extrude dropping to between 1 and 2N in the range of 200 to 240°C. This data suggests trade-offs between maintaining a reasonable extruding pressure and maintaining good build resolution and speed. A discussion of the low cost rapid prototyping cycle follows, as well as instructions for assembly and use of the extruder. The paper ends with several suggestions to improve extruder performance and a list of ideas for bringing the extruder costs down.en_US
dc.description.statementofresponsibilityby Aaron Eduardo Ramirez.en_US
dc.format.extent89 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleDesign, fabrication, and characterization of a low-cost flexural bearing based 3D printing tool headen_US
dc.title.alternativeLow-cost flexural bearing based 3D printing tool headen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc676836290en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record