MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and prototyping of a low-cost portable mechanical ventilator

Author(s)
Powelson, Stephen K. (Stephen Kirby)
Thumbnail
DownloadFull printable version (2.487Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Alexander H. Slocum.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional bag-valve mask (BVM) with a pivoting cam arm, eliminating the need for a human operator for the BVM. An initial prototype was built out of acrylic, measuring 11.25 x 6.7 x 8 inches (285 x 170 x 200 mm) and weighing 9 lbs (4.1 kg). It is driven by a stepper motor powered by a 14.8 VDC battery and features an adjustable tidal volume of up to 900 mL, adjustable breaths per minute (bpm) of 5-30, and inhalation to exhalation time ratio (i:e ratio) options of 1:2, 1:3 and 1:4. Tidal volume, breaths per minute and i:e ratio are set via user-friendly knobs, and the settings are displayed on an LCD screen. The prototype also features an assist-control mode and an alarm to indicate over-pressurization of the system. Future iterations of the device will be fully calibrated to medical standards and include all desired ventilator features. Future iterations will be further optimised for low power-consumption and will be designed for manufacture and assembly. With a prototyping cost of only $420, the bulk-manufacturing price for the ventilator is estimated to be less than $100. Through this prototype, the strategy of cam-actuated BVM compression is proven to be a viable option to achieve low-cost, low-power portable ventilator technology that provides essential ventilator features at a fraction of the cost of existing technology. Keywords: Ventilator, Bag Valve Mask (BVM), Low-Cost, Low-Power, Portable and Automatic.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. [10]).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/59954
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.