MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Supermaneuverable perching

Author(s)
Cory, Rick E. (Rick Efren)
Thumbnail
DownloadFull printable version (16.67Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Russell L. Tedrake.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Birds have the impressive ability to gracefully 'swim' through the air while executing aerobatic maneuvers that routinely defy modern aeronautical and control engineering, consistently reminding us that the skies are truly their playground. These animals are masters at inducing and exploiting post-stall aerodynamics to quickly execute maneuvers with unprecedented precision, with nowhere near the sustained propulsive power found in modern state-of-the-art aircraft. This amazing ability to manipulate the air is commonly attributed to the intricate morphology of the wings, tail, feathers and overall sensory motor system of the animal. In this thesis we demonstrate, on real hardware, that using only an approximate model of the post-stall aerodynamics in combination with principled and novel tools in optimal control, even a simple fixed-wing foam glider (no propeller) made out of rigid flat plates, with a single actuator at the tail, is capable of executing a highly dynamic bird-like perching maneuver to land on a power-line by exploiting pressure drag on its stalled wings and tail. We present a feedback controller capable of stabilizing the maneuver over a wide range of flight speeds and quantify its robustness to wind-gust disturbances. In order to better characterize the aerodynamics during perching, we performed smoke-visualization in a low-speed free flight wind-tunnel, where we were able to capture real images of the dominant vortex wake dynamics. We describe the application of these results to the synthesis of higher fidelity aerodynamic models. We also demonstrate our initial perching experiments with flapping wings, using a flapping-wing version of our glider as well as our fully computerized two-meter wingspan robotic bird, Phoenix.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 83-88).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/60142
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.