Show simple item record

dc.contributor.advisorSeth Telleren_US
dc.contributor.authorKoch, Olivier (Olivier A.)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2010-12-06T17:30:23Z
dc.date.available2010-12-06T17:30:23Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/60152
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 89-97) and index.en_US
dc.description.abstractThe ability to navigate through the world is an essential capability to humans. In a variety of situations, people do not have the time, the opportunity or the capability to learn the layout of the environment before visiting an area. Examples include soldiers in the field entering an unknown building, firefighters responding to an emergency, or a visually impaired person walking through the city. In absence of external source of localization (such as GPS), the system must rely on internal sensing to provide navigation guidance to the user. In order to address real-world situations, the method must provide spatially extended, temporally consistent navigation guidance, through cluttered and dynamic environments. While recent research has largely focused on metric methods based on calibrated cameras, the work presented in this thesis demonstrates a novel approach to navigation using uncalibrated cameras. During the first visit of the environment, the method builds a topological representation of the user's exploration path, which we refer to as the place graph. The method then provides navigation guidance from any place to any other in the explored environment. On one hand, a localization algorithm determines the location of the user in the graph. On the other hand, a rotation guidance algorithm provides a directional cue towards the next graph node in the user's body frame. Our method makes little assumption about the environment except that it contains descriptive visual features. It requires no intrinsic or extrinsic camera calibration, and relies instead on a method that learns the correlation between user rotation and feature correspondence across cameras. We validate our approach using several ground truth datasets. In addition, we show that our approach is capable of guiding a robot equipped with a local obstacle avoidance capability through real, cluttered environments. Finally, we validate our system with nine untrained users through several kilometers of indoor environments.en_US
dc.description.statementofresponsibilityby Olivier Koch.en_US
dc.format.extent99 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleBody-relative navigation guidance using uncalibrated camerasen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc681615120en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record