MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cooperative hierarchical resource management for efficient composition of parallel software

Author(s)
Pan, Heidi, 1980-
Thumbnail
DownloadFull printable version (9.904Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Krste Asanovć.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
There cannot be a thriving software industry in the upcoming manycore era unless programmers can compose arbitrary parallel codes without sacrificing performance. We believe that the efficient composition of parallel codes is best achieved by exposing unvirtualized hardware resources and sharing these cooperatively across parallel codes within an application. This thesis presents Lithe, a user-level framework that enables efficient composition of parallel software components. Lithe provides the basic primitives, standard interface, and thin runtime to enable parallel codes to efficiently use and share processing resources. Lithe can be inserted underneath the runtimes of legacy parallel software environments to provide bolt-on composability - without changing a single line of the original application code. Lithe can also serve as the foundation for building new parallel abstractions and runtime systems that automatically interoperate with one another. We have built and ported a wide range of interoperable scheduling, synchronization, and domain-specific libraries using Lithe. We show that the modifications needed are small and impose no performance penalty when running each library standalone. We also show that Lithe improves the performance of real world applications composed of multiple parallel libraries by simply relinking them with the new library binaries. Moreover, the Lithe version of an application even outperformed a third-party expert-tuned implementation by being more adaptive to different phases of the computation.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 93-96).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/60172
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.