MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Closed-loop auditory-based representation for robust speech recognition

Author(s)
Lee, Chia-ying (Chia-ying Jackie)
Thumbnail
DownloadFull printable version (11.81Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
James R. Glass and Oded Ghitza.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A closed-loop auditory based speech feature extraction algorithm is presented to address the problem of unseen noise for robust speech recognition. This closed-loop model is inspired by the possible role of the medial olivocochlear (MOC) efferent system of the human auditory periphery, which has been suggested in [6, 13, 42] to be important for human speech intelligibility in noisy environment. We propose that instead of using a fixed filter bank, the filters used in a feature extraction algorithm should be more flexible to adapt dynamically to different types of background noise. Therefore, in the closed-loop model, a feedback mechanism is designed to regulate the operating points of filters in the filter bank based on the background noise. The model is tested on a dataset created from TIDigits database. In this dataset, five kinds of noise are added to synthesize noisy speech. Compared with the standard MFCC extraction algorithm, the proposed closed-loop form of feature extraction algorithm provides 9.7%, 9.1% and 11.4% absolution word error rate reduction on average for three kinds of filter banks respectively.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.
 
Includes bibliographical references (p. 93-96).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/60176
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.