Show simple item record

dc.contributor.advisorAnantha P. Chandrakasan.en_US
dc.contributor.authorSinangil, Yildizen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2010-12-06T17:34:51Z
dc.date.available2010-12-06T17:34:51Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/60183
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.en_US
dc.descriptionIncludes bibliographical references (p. 61-65).en_US
dc.description.abstractScaling of process technologies has made power management a significant concern for circuit designers. Moreover, denser integration and shrinking geometries also have a negative impact on circuit reliability. Therefore, fault tolerance is becoming a more challenging problem. Static Random Access Memories (SRAMs) play a significant role in circuit power consumption and reliability of digital circuits. This thesis focuses on fault tolerant and low voltage SRAM design. A double error correcting binary BCH codec is chosen to mitigate reliability problems. Different decoding schemes are compared in terms of their synthesized power, area and latency. An alternative decision-tree based decoder is analyzed. This decoder requires 16ns for error correction and 5ns for error detection at 1.2V using 65nm CMOS. Compared to conventional iterative decoding scheme in which error correction takes more than 100 clock cycles for 128-bit word length, the analyzed decoder has a significant latency advantage. Meanwhile, compared to the look-up table (LUT) decoder, the decision-tree based architecture has 2X area and power savings. Hence, the tree-based decoder is an alternative design which does not have the extreme power and area consumption of a LUT decoder and does not have the extreme latency of an iterative implementation. An 8T SRAM block is designed in 65nm CMOS low-power, high VT process for the on-chip caches of a low-voltage processor. This SRAM is designed for the array voltage range of 1.2V to 0.4V. It provides more than 4 orders of magnitude performance scaling and lOX power savings.en_US
dc.description.statementofresponsibilityby Yildiz Sinangil.en_US
dc.format.extent65 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleFault tolerant, low voltage SRAM designen_US
dc.title.alternativeFault tolerant, low voltage Static Random Access Memories designen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc681911467en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record