Show simple item record

dc.contributor.advisorSrinivas Devadas.en_US
dc.contributor.authorShim, Keun Supen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2010-12-06T17:35:07Z
dc.date.available2010-12-06T17:35:07Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/60185
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.en_US
dc.descriptionIncludes bibliographical references (p. 63-67).en_US
dc.description.abstractMost routers in on-chip interconnection networks (OCINs) have multiple virtual channels (VCs) to mitigate the effects of head-of-line blocking. Multiple VCs necessitate VC allocation schemes since packets or flows must compete for channels when there are more flows than virtual channels at a link. Conventional dynamic VC allocation, however, raises two critical issues. First, it still suffers from a fair amount of head-of-line blocking since all flows can be assigned to any VC within a link. Moreover, dynamic VC allocation compromises the guarantee of in-order delivery even when used with basic variants of dimension-ordered routing, requiring large reorder buffers at the destination core or, alternatively, expensive retransmission logic. In this thesis, we present two virtual channel allocation schemes to address these problems: Static Virtual Channel Allocation and Exclusive Dynamic Virtual Channel Allocation (EDVCA). Static VC allocation assigns channels to flows by precomputation when oblivious routing is used, and ensures deadlock freedom for arbitrary minimal routes when two or more VCs are available. EDVCA, on the other hand, is done at runtime, not requiring knowledge of traffic patterns or routes in advance. We demonstrate that both static VCA and EDVCA guarantee in-order packet delivery under single path routing, and furthermore, that they both outperform dynamic VC allocation (out-of-order) by effectively reducing head-of-line blocking. We also introduce a novel bandwidth-sensitive oblivious routing scheme (BSORM), which is deadlock-free through appropriate static VC allocation. Implementation for these schemes requires only minor, inexpensive changes to traditional oblivious dimension-ordered router architectures, more than offset by the removal of packet reorder buffers and logic.en_US
dc.description.statementofresponsibilityby Keun Sup Shim.en_US
dc.format.extent67 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleStatic and dynamic virtual channel allocation for high performance, in-order communication in on-chip networksen_US
dc.title.alternativeStatic and dynamic VC allocation for high performance, in-order communication in on-chip networksen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.identifier.oclc681916763en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record